姓名:陈信强
性别:男
邮箱:xqchen@shmtu.edu.cn
学位/职称:博士/讲师
出生年月: 1987 年12月
学科专业:交通运输(轨道交通运输、道路交通运输)
讲授课程:
研究生课程:智能港口图像处理技术,智能交通系统概论
研究方向:交通环境智能感知与理解、交通大数据建模与分析、无人车/船视觉导航
出版著作及代表性论文:
[1] Xinqiang Chen, Zhibin Li, Yongsheng Yang, et al. (2021). "High-Resolution Vehicle Trajectory Extraction and Denoising from Aerial Videos" IEEE Transactions on Intelligent Transportation Systems, 22(5): 3190-3202. (ESI高被引,热点论文,SCI).
[2] Xinqiang Chen, Shengzheng Wang, Chaojian Shi, et al. (2019). "Robust ship tracking via multi-view learning and sparse representation", Journal of Navigation, 72(1), 176-192. (SCI,ESI高被引,入选2021年交通运输重大科技成果库).
[3] Xinqiang Chen, Yongsheng Yang, Shengzheng Wang, et al. (2020). "Ship Type Recognition via a Coarse-to-Fine Cascaded Convolution Neural Network", Journal of Navigation, 73(4), 813-832. (SCI, ESI高被引).
[4] Xinqiang Chen, Huixing Chen, Yongsheng Yang, et al. (2021). " Traffic flow prediction by an ensemble framework with data denoising and deep learning model" Physica A: Statistical Mechanics and Its Applications, 565(2021), 1-11. (SCI, ESI高被引).
[5] Xinqiang Chen, Lei Qi, Yongsheng Yang, et al. (2020). "Video-based Detection Infrastructure Enhancement for Automated Ship Recognition and Behavior Analysis", Journal of Advanced Transportation, 2020, 1-12 (SCI, ESI高被引).
[6] Xinqiang Chen, Xueqian Xu, Yongsheng Yang, et al. (2020). "Augmented Ship Tracking under Occlusion Conditions from Maritime Surveillance Videos" IEEE ACCESS, 8(1), 42884-42897. (SCI, ESI高被引).
[7] Xinqiang Chen, Zichuang Wang, Qiaozhi Hua, et al. " AI-Empowered Speed Extraction via Port-like Videos for Vehicular Trajectory Analysis " IEEE Transactions on Intelligent Transportation Systems, 1-12, DOI:10.1109/TITS.2022.3167650 (SCI).
[8] Xinqiang Chen, Jun Lin, Yongsheng Yang, et al. (2021). "Ship Detection from Coastal Surveillance Videos via an Ensemble Canny-Gaussian-Morphology Framework" Journal of Navigation, 74(6): 1252-1266. (SCI).
[9] Xinqiang Chen, Xueqian Xu, Yongsheng Yang, et al. (2021). "Visual Ship Tracking via a Hybrid Kernelized Correlation Filter and Anomaly Cleansing Framework" Applied Ocean Research, 106(2021), 1-10. (SCI).
[10] Xinqiang Chen, Shubo Wu, Chaojian Shi, et al. (2020). " Sensing Data Supported Traffic Flow Prediction via Denoising Schemes and ANN: A Comparison" IEEE Sensors Journal, 20(23), 14317-14328. (SCI).
[11] Xinqiang Chen, Jun Ling, Yongsheng Yang, et al. (2020). "Ship Trajectory Reconstruction from AIS Sensory Data via Data Quality Control and Prediction" Mathematical Problems in Engineering, 1-9. (SCI).
[12] Xinqiang Chen, Zhibin Li, Yinhai Wang, et al. (2018). "Anomaly Detection and Cleaning of Highway Elevation Data from Google Earth Using Ensemble Empirical Mode Decomposition", Journal of Transportation Engineering, Part A: Systems, 144(5), 1-14. (SCI).
[13] Xinqiang Chen, Zhibin Li, Yinhai Wang, et al. (2017). "Evaluating the impacts of grades on vehicular speeds on interstate highways", PloS one, 12(9), 1-15. (SCI).
[14] 陈信强,史飞翔,王梓创等. "基于模糊逻辑方法的多船会遇安全态势评估 " 广西大学学报(自然科学版), (北大核心, 录用).
[15] 陈信强,徐祥龙,彭静等. "基于Douglas-Peucker和Quick Bundles算法的水上交通模式识别 "上海海事大学学报, (北大核心, 录用).
[16] 陈信强,郑金彪,凌峻等 (2022). "基于异步交互聚合方法的港船人员异常行为识别 " 交通信息与安全, 40(2): 22-29 (北大核心,CSCD).
[17] 陈信强, 凌峻, 齐雷等(2021). "多特征融合和尺度变化估计的船舶跟踪方法",计算机工程与应用, 57(13), 246-250 (北大核心,CSCD扩展).
主持承担科研项目及经费:
[1] 国家自然科学基金:通航环境混合干扰的船舶图像航迹跟踪研究,项目编号:52102397,2022.1-2024.12,30万元,主持,在研。
[2] 校级国际专利培育基金:一种级联式由粗到精的卷积神经网络船舶类型识别方法(PCT),2019-2020,6万,主持,已结题。
[3] 上海市教委:上海高校青年教师培养资助计划,2019.1-2020.12,4万,主持,已结题。
[4] 国家自然科学基金:事故信息不完备环境下水上交通救援资源调控研究,项目编号:52072237,2021.1-2024.12,60万元,主要参与人,在研。
[5] 国家自然科学基金:基于动态自适应成簇的海洋传感网智能数据预测与重构,项目编号:52071200,2021.1-2024.12,58万元,主要参与人,在研。
科研成果(获奖、专利、版权、著作权、外观设计等):
获奖:l 国际交通科技年会CICTP 2020-21最佳区域编辑
l 第十三届全国交通运输领域青年学术会议优秀论文(10%)
l SSCI国际期刊 Maritime Policy & Management杰出审稿人.
l SCI国际期刊 Journal of King Saud University-Computer and Information Sciences 杰出审稿人.
专利:
[1] 国际发明专利: A method for evaluating water traffic conditions based on fuzzy rules, 202200772,2022,授权.
[2] 发明专利: 一种车头时距建模方法及一种最小绿灯时间计算方法, 201910461276.2,2019,授权.
[3] 发明专利: 面向港航环境下的工作人员异常行为识别方法, 202210006996.1,2022.